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Abstract

The design variable tolerance effects on the natural frequency variance of constrained multi-body systems in

dynamic equilibrium are investigated in this study. Monte-Carlo simulation is often employed for such investigations,

but it is known to have serious drawbacks. Excessive amount of computation time needs to be consumed since a large

number of evaluations are usually required for the method. Furthermore, the solution accuracy cannot be always

guaranteed in spite of the excessive amount of computation time. In order to overcome such drawbacks, a method

employing eigenvalue sensitivity information is proposed to obtain the variance of natural frequency in this study. In order

to verify the accuracy and the efficiency of the method, some numerical examples of multi-body systems in dynamic

equilibrium are solved and the results are compared to those obtained by an analytical method and Monte-Carlo

simulation.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A dynamic equilibrium state can be often found in a mechanical system in which a part of the system
undergoes constant rotational motion. Such systems having rotating parts include governor mechanisms,
turbomachines and amusement park rides. In a state of dynamic equilibrium of a mechanical system, some of
the generalized coordinates remain constant while the others may vary with time. In order to find the constant
generalized coordinates of a constrained multi-body system in dynamic equilibrium, a general multi-body
formulation was proposed (see Ref. [1]). A velocity transformation (see Ref. [2]) along with relative
coordinates (see Refs. [3,4]) was employed for the formulation, and nonlinear algebraic equations were
obtained and numerically solved by using an iterative method.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In 1986, a pioneering method for determining the modal characteristics of a general multi-body system was
introduced by Sohoni and Whitesell [5]. With the purpose to find the modal characteristics of a constrained
multi-body system in static equilibrium, they derived and solved an eigenvalue problem for which the mass,
damping and stiffness matrices were obtained from a general multi-body formulation. However, the modal
characteristics of a multi-body system in dynamic equilibrium could not be obtained with the method. More
recently, Choi et al. [6] proposed a method to find the modal characteristics of a multi-body system in dynamic
equilibrium. The equations of motion employing relative coordinates were first derived and then linearized
around a dynamic equilibrium position so that an eigenvalue problem could be derived and solved. Since the
static equilibrium is only a special case of the dynamic equilibrium, this method is more general than the
Sohoni and Whitesell method.

With the intent to design a multi-body system which operates around a dynamic equilibrium position, the
dynamic equilibrium position and the corresponding modal characteristics need to be obtained accurately and
efficiently. Moreover, the effects of design variable tolerances on the variance of modal characteristics should
be also obtained accurately and efficiently for the design of the multi-body system. Such information is crucial
for robust system design, since excessive variance of modal characteristics of a mechanical system should be
avoided during the life time operation.

Over the last years, the effects of various design variable tolerances on the motion errors of mechanical
linkage systems have been investigated by many researchers. In 1964, Hartenberg and Denavit [7] first
addressed the issue of mechanical errors in linkages due to tolerances. They estimated the mechanical errors
based on the maximum allowable tolerances of the link lengths in four-bar linkages. Their method employed a
deterministic approach and offered a ‘worst case’ result due to a tolerance. Garret and Hall [8] developed a
statistical approach to determine mechanical errors due to link length tolerances and joint clearances. They
represented the error as a mobility band and carried out Monte-Carlo simulations for a four-bar linkage
system. More recently, Lee [9] proposed an effective link model for which an analytic formulation employing
the first-order Taylor series expansion was employed. Lee and Gilmore [10] later considered the uncertainties
due to the tolerances of pin location, link length, and the radial clearance as variations of the effective link
model. More recently, several research results (see Refs. [11–15]) related to the joint clearance were published.

Most of the above studies limited themselves to the tolerance effects on the motion errors of mechanical
systems, rarely studying the tolerance effects on the variances of other characteristics. Furthermore, most of
them were limited to linkage systems. So, specific formulations for certain linkage systems were used for the
studies. A general multi-body formulation has rarely been employed to analyze the tolerance effects on the
performance or characteristic variances of mechanical systems. The purpose of the present study is to present
an efficient and systematic method to investigate the tolerance effects on the modal characteristic variances of
general multi-body systems in dynamic equilibrium. In particular, the modal characteristic variances of
general multi-body systems undergoing rotational motion are investigated in this study. The accuracy and the
efficiency of the proposed method are compared to those of an analytical method and Monte-Carlo simulation
through some numerical examples.
2. Equations of motion for multi-body systems in dynamic equilibrium

The augmented Lagrange equations of motion for a constrained multi-body system (see Refs. [16–19]) are
generally written in terms of Cartesian coordinates as follows:

M €xþUT
xk ¼ Q (1)

where M denotes a mass matrix, Q denotes a generalized force vector, k denotes the Lagrange multiplier
vector, and Ux is called the Jacobean matrix, which is the derivative of the constraint equations U with respect
to a set of Cartesian coordinates x.

When a constrained multi-body system is in dynamic equilibrium, its relative configuration becomes fixed.
Therefore, it is much more efficient to employ relative coordinates to find the dynamic equilibrium of a
constrained multi-body system. In order to derive the equations of motion in terms of a set of relative
coordinates (which is hereafter denoted as q), a velocity transformation method is employed. The Cartesian
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velocity vector _x is related to the relative velocity vector _q as follows:

_x ¼ B_q (2)

where B denotes the velocity transformation matrix between the two velocity vectors.
In order to derive the equations of motion for a constrained multi-body system undergoing constant

rotational motion, the system coordinates are partitioned into qD (coordinates which are involved with the
constant rotational motion) and qR (the rest of the relative coordinates). Thus,

q ¼ qTD qTR

h iT
(3)

Now, the Cartesian velocity vector _x is related to _qD and _qR as follows:

_x ¼ BD _qD þ BR _qR (4)

where the velocity transformation matrices BD and BR are sub-matrices associated with the velocity vectors _qD
and _qR. Therefore, B is composed of BD and BR as follows:

B ¼ BD BR

� �
(5)

By taking the time derivative of Eq. (4), the following equation can be obtained:

€x ¼ BD €qD þ BR €qR þ _BD _qD þ _BR _qR (6)

Substituting Eq. (6) into Eq. (1) and pre-multiplying the result by BT
R, the equations of motion can be

obtained (for an open-loop system) as

M� €qR ¼ Q� (7)

where

M� ¼ BT
RMBR (8)

Q� ¼ BT
RðQ�MBD €qD �M _BD _qD �M _BR _qRÞ (9)

At the dynamic equilibrium state, _qR, €qR, and €qD become zero, while _qD is constant. Therefore, the following
equilibrium equation can be obtained from Eq. (7):

BT
RðQ�M _BD _qDÞ ¼ 0 (10)

Eq. (10) constitutes algebraic equations from which the values of the coordinates qR should be found.
A numerical method using an iterative scheme, such as the Newton–Raphson method, is usually employed to
find the equilibrium state values since Eq. (10) is nonlinear in terms of qR.

For the modal analysis of the system, the following homogeneous linear equation can be obtained by
linearizing Eq. (7):

M̂ €qR þ Ĉ _qR þ K̂ qR ¼ 0 (11)

where M̂, Ĉ and K̂, which denote mass, damping and stiffness matrices, respectively, can be obtained
as follows:

M̂ ¼ BT
RMBRjq�

R
(12)

Ĉ ¼ �
qQ�

q_qR

����
q�
R

(13)

K̂ ¼ �
qQ�

qqR

����
q�
R

(14)

where q�R denotes the value of qR at the dynamic equilibrium. Eq. (12) can be obtained directly from Eq. (8).
Eqs. (13) and (14) can be obtained by linearizing Eq. (9) with respect to _qR and qR. Analytical derivation
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procedures of the damping and the stiffness matrices are much complicated. So, the finite difference method is
employed to obtain the damping and the stiffness matrices in the present work.

If the system is a closed-loop system, the equations of motion of a constrained multi-body system can be
derived (see Ref. [20]) as follows:

M� €qR þUcT
qR

kc
¼ Q� (15)

where Uc denotes the constraint equations which are involved with the cut joints of the system, kc denotes the
corresponding Lagrange multiplier vector, and Uc

qR
denotes the derivative of Uc with respect to qR.

At the dynamic equilibrium state, the following equation can be obtained:

BT
RðQ�M _BD _qDÞ �UcT

qR
kc
¼ 0 (16)

In order to obtain the dynamic equilibrium position, the above equation along with Uc
¼ 0 should be solved

simultaneously. In a similar way to an open-loop system discussed previously, an iterative method should be
employed to find the equilibrium state. In this case, kc as well as qR is obtained.

For a closed-loop system, the qR’s are not all independent. So let us say that u denotes the dependent
coordinates of qR and v denotes the independent coordinates of qR. The number of the independent
coordinates v depends on the type of the joints of the closed loops. As long as the number of v is correct one
can freely choose the independent coordinates from qR. Then, the following equation can be written:

UcT
u _uþUcT

v _v ¼ 0 (17)

Now, the following equation can be obtained with the above equation:

_qR ¼ R_v (18)

where

R ¼
�ðUcT

u Þ
�1UcT

v

I

" #
(19)

Substituting Eq. (18) into Eq. (15) and pre-multiplying the result by RT, the equations of motion can be
rewritten as follows:

RTM�R€vþ RTM� _R _v� RTQ� ¼ 0 (20)

From the above equation, the following homogeneous linear equation can be obtained for the modal
analysis of the system:

M̂ €vþ Ĉ _vþ K̂ v ¼ 0 (21)

where M̂, Ĉ and K̂ can be obtained as follows:

M̂ ¼ RTBT
RMBRRjv� (22)

Ĉ ¼
q

q_qR
RT½Q� �M� _R _v�jv� (23)

K̂ ¼
q

qqR
RT½Q� �M� _R _v�jv� (24)

where v� denotes the value of v at the dynamic equilibrium. Again, Eq. (22) can be employed directly to
calculate the mass matrix. However, the finite difference method is employed to calculate the damping and the
stiffness matrices numerically.
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3. Sensitivity and tolerance analysis

The eigenvalue problem of a damped system can be stated (see Ref. [21]) as follows:

ðl2j M̂þ ljĈþ K̂Þfj ¼ 0 (25)

where fj denotes the normalized mode vector and lj denotes the corresponding eigenvalue. Differentiating
Eq. (25) with respect to a design variable b, one can obtain

l2j M̂þ ljĈþ K̂
� � qfj

qb
þ

qlj

qb
ð2ljM̂þ ĈÞfj þ l2j

qM̂
qb
þ lj

qĈ
qb
þ

qK̂
qb

 !
fj ¼ 0 (26)

Pre-multiplying Eq. (26) by fj
T, and employing Eq. (25) and the normalized condition fT

j ð2ljM̂þ ĈÞfj ¼ 1,
the sensitivity of the eigenvalue lj for the design variable b can be obtained as follows:

qlj

qb
¼ �fT

j l2j
qM̂
qb
þ lj

qĈ
qb
þ

qK̂
qb

 !
fj (27)

Unless the damping matrix has a special form (such as a proportional damping matrix) complex eigenvalues
are obtained from the eigenvalue problem of Eq. (25). Since the imaginary parts of complex eigenvalues
represent the damped natural frequencies, the sensitivity of the damped natural frequencies for the design
variable b is the imaginary part of qlj=qb. If M̂, Ĉ and K̂ matrices are given in analytical forms, the sensitivity
information can be obtained analytically. However, for general multi-body systems, M̂, Ĉ and K̂ matrices are
not given in analytical forms. So, in general, the sensitivities of the matrices should be found numerically.

If the samples of the design variable b have a normal distribution with 99.73% confidence interval, the
variance of a damped natural frequency can be obtained (see Refs. [22,23]) by the following equation:

sj ¼
1

3

qlj

qb

� �
T (28)

where T denotes the tolerance of the design variable b, and the standard deviation of the jth damped natural
frequency is the imaginary part of sj.

The first-order variance information is only employed to obtain the mean value in this study. In order to
increase the accuracy of the mean value, the second-order variance information should be employed.
However, the second-order variance information can be only obtained with the third and the fourth moments
of b, which are not practically available. In most practical problems, the first-order variance information is
sufficient to obtain accurate mean values. With this information the imaginary part of lj becomes the mean
value of the jth damped natural frequency regardless of the tolerance of the design variable b.
4. Numerical results

In this section, some numerical results obtained with some multi-body system examples such as a double
pendulum and a governor mechanism are exhibited to demonstrate the efficiency and the accuracy of the
methodology proposed in this study.

Fig. 1 shows a double pendulum system undergoing a rotational motion. Each pendulum arm is a uniform
homogeneous bar having a mass of 3 kg and length of 1m. The two pendulum arms are connected by a pin
joint, and the first pendulum arm is connected to a vertical shaft which undergoes a constant rotational
motion. The angle between the vertical shaft and the first pendulum arm is denoted as y1, and that between the
vertical shaft and the second pendulum arm is denoted as y2.

Fig. 2 shows the variations of the angles y1 and y2 at the dynamic equilibrium state versus the driving
angular speed. The pendulum arms remain vertical until the angular speed reaches a certain value
(2.679 rad/s). The virtual moment created by the gravitational force is larger than that created by the
centrifugal inertial force until the angular speed reaches the value (2.679 rad/s). As the angular speed increases
after exceeding the value, the equilibrium angles y1 and y2 increase and converge to a value of p/2 radian.
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Fig. 1. Configuration of the rotating double pendulum.

Fig. 2. Variations of the dynamic equilibrium angles y1 and y2 versus the driving angular speed.

B.S. Kim et al. / Journal of Sound and Vibration 320 (2009) 545–558550
Of course, y2 should be always larger than y1 since the second pendulum arm undertakes a larger moment
created by the centrifugal inertia force.

Fig. 3 shows the variations of the first and the second natural frequencies versus the driving angular speed.
As shown in the figure, the first and the second natural frequencies decrease until the angular speed reaches
2.679 rad/s. The first natural frequency especially becomes null at the angular speed. After reaching the
minimum values at the angular speed, the two natural frequencies increase monotonically as the angular speed
increases. Since this example is very simple, its equations of motion can be derived directly and the sensitivity
information can be obtained analytically from the equations.

Fig. 4 shows the mean values of the natural frequencies versus the driving angular speed. The length
of the two pendulum arms is assumed to have a normal distribution with 99.73% confidence. Three
cases of pendulum arm length tolerances (3.0%, 6.0%, and 12.0%) are considered for the
Monte-Carlo simulation. The mean values obtained by the proposed method are plotted too. As shown,
the results obtained by the proposed methods are in good agreement with those obtained by the
Monte-Carlo simulation, indicating trivial differences among the results obtained with the three different
tolerances.
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Fig. 3. Variations of the first and the second natural frequencies versus the driving angular speed.

Fig. 4. Comparison of mean values of the natural frequencies (the proposed method versus the Monte-Carlo simulation).
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Figs. 5 and 6 show the standard deviations of the first and the second natural frequencies versus the driving
angular speed. Three cases of pendulum length tolerances (3.0%, 6.0%, and 12.0%) are employed to obtain
the results. As shown, the results obtained by the proposed method are almost identical to the analytical
solutions which are obtained with the directly derived equations of motion. As can be expected intuitively, the
standard deviations of the natural frequencies increase as the tolerance increases. A few more interesting facts
can be noticed from the results too. The standard deviations of the first natural frequency become extremely
large around the angular speed 2.679 rad/s while those of the second natural frequency remain relatively small.
One can also observe that the standard deviations of the two natural frequencies become sufficiently small as
the angular speed keeps increasing.

The results obtained by the proposed method and the Monte-Carlo method, which are compared in Figs. 7
and 8, are generally in good agreement. However, the standard deviations of the first natural frequency
obtained by the Monte-Carlo simulation are clearly different from those obtained by the proposed method
around the angular speed 2.679 rad/s. For the Monte-Carlo simulation, 3000 samples were employed to obtain
the results. Employing more samples would certainly increase the accuracy of the results, but it would also
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Fig. 5. Comparison of standard deviations of the first natural frequency (the proposed method versus the analytical method).

Fig. 6. Comparison of standard deviations of the second natural frequency (the proposed method versus the analytical method).

Fig. 7. Comparison of standard deviations of the first natural frequency (the proposed method versus the Monte-Carlo simulation).

B.S. Kim et al. / Journal of Sound and Vibration 320 (2009) 545–558552
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Fig. 8. Comparison of standard deviations of the second natural frequency (the proposed method versus the Monte-Carlo simulation).

Table 1

Comparison of CPU time between the proposed method and the Monte-Carlo simulation (for double pendulum)

Method CPU time (s) Ratio

Proposed method 3.297 1

Monte-Carlo method 3286 997

Fig. 9. Configuration of a governor mechanism.

B.S. Kim et al. / Journal of Sound and Vibration 320 (2009) 545–558 553
lead to a prohibitively long computation time. Table 1 shows the comparison of CPU time consumed by the
proposed method and the Monte-Carlo simulation. As shown in the table, even with the 3000 samples, the
Monte-Carlo method consumes much larger computation time. As the number of parts (or degrees of
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freedom) of the multi-body system increases, the CPU time increases exponentially. So, employing more than
3000 samples for the Monte-Carlo simulation for practical problems is almost impossible.

Fig. 9 shows a governor mechanism which has two closed kinematic loops. Body 1 of the system is the
spindle which is driven by a constant angular speed, bodies 2 and 3 are pendulums which have a sphere mass at
each end, and body 4 is the collar. The spindle and the pendulums are connected by revolute joints; the spindle
and the collar are connected by a translational joint, a damper and a spring; and the collar and the pendulums
are connected by distance joints having fixed distance of 0.1092m. The damping constant of the damper is
400N s/m. The stiffness and the free length of the spring are 1000N/m and 0.15m, respectively. The inertial
properties of the governor mechanism’s parts are given in Table 2, and the initial positions of some points in
the governor mechanism are given in Table 3.

Fig. 10 shows the mean values of the natural frequency (obtained with the proposed method and the
Monte-Carlo simulation) versus the spindle angular speed for three different tolerances of the spring constant.
Table 2

Inertia properties of the parts which constitute the governor mechanism

Body Mass (kg) Moment of inertia (kgm2)

Ixx Iyy Izz

Spindle 200.0 25.0 50.0 25.0

Ball 1 1.0 0.1 0.1 0.1

Ball 2 1.0 0.1 0.1 0.1

Collar 1.0 0.15 0.125 0.15

Table 3

Initial positions of some points in the governor mechanism

Point Initial position (m)

O1 [0.0, 0.2, 0.0]

O2 [�0.16, 0.2, 0.0]

O3 [0.16, 0.2, 0.0]

O4 [0.0, 0.1256, 0.0]

P [�0.08, 0.2, 0.0]

Q [0.08, 0.2, 0.0]

Fig. 10. Mean values of the natural frequency for three tolerances of spring constant (the proposed method versus the Monte-Carlo

simulation).
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Fig. 11. Standard deviations of the natural frequency for three tolerances of spring constant (the proposed method versus the Monte-

Carlo simulation).

Table 4

Comparison of CPU time between the proposed method and the Monte-Carlo simulation (for the governor mechanism)

Method CPU time (s) Ratio

Proposed method 2.188 1

Monte-Carlo method 2525 1154

Fig. 12. Standard deviations of the natural frequency for three tolerances of damping constant (the proposed method versus the Monte-

Carlo simulation).

B.S. Kim et al. / Journal of Sound and Vibration 320 (2009) 545–558 555
As shown, the results obtained with the two methods are in good agreement. The variation of the damping
ratio is also shown in the figure. The mean values of the damped natural frequency reach their minimum
values when the damping ratio reaches its maximum value (slightly less than 1.0).

Fig. 11 shows the standard deviations of the natural frequency versus the driving angular speed for three
different tolerances of spring constant. The results obtained by the proposed method are compared with those
by the Monte-Carlo simulation. As shown, the standard deviations are significantly affected by the variation
of tolerance. In particular, the standard deviation becomes large around the angular speed where the damped
natural frequency reaches its minimum value. This figure also shows that the error of the results obtained by
the Monte-Carlo simulation becomes larger at the angular speed, too. Table 4 shows the comparison of CPU
time consumed by the proposed method and the Monte-Carlo simulation.
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Fig. 13. Standard deviations of the natural frequency for three tolerances of pendulum mass (the proposed method versus the Monte-

Carlo simulation).

Fig. 14. Standard deviations of the natural frequency for three tolerances of pendulum length (the proposed method versus the Monte-

Carlo simulation).

B.S. Kim et al. / Journal of Sound and Vibration 320 (2009) 545–558556
Fig. 12 shows the standard deviations of the natural frequency versus the driving angular speed for three
different tolerances of damping constant. The standard deviations become maximized around the angular
speed where the damped natural frequency reaches its minimum value. Compared to Fig. 11, discrepancy
between the two results obtained by the proposed method and the Monte-Carlo simulation becomes more
significant around the angular speed when the tolerance of damping constant is 12%. In general, the tolerance
of the damping constant affects the standard deviations of the natural frequency more than that of the spring
constant.

Figs. 13 and 14 show the standard deviations of the natural frequency versus the driving angular speed for
three different tolerances of pendulum mass and pendulum length. Again, the standard deviations become
maximized around the angular speed where the damped natural frequency reaches its minimum value.
However, the maximum values of the standard deviations are smaller than the values obtained in the previous
figures.
5. Conclusion

A method to analyze the design variable tolerance effect on the natural frequency variance of a
constrained multi-body system in dynamic equilibrium is proposed in this study. A sensitivity equation is
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derived from an eigenvalue problem for which the mass, damping and stiffness matrices are
obtained from a general multi-body formulation. The variance of a natural frequency can be calculated
using the sensitivity information which is obtained from the sensitivity equation. A numerical study
shows that the proposed method is accurate and much more efficient than the Monte-Carlo simulation.
In general the tolerance effect of a design variable on the natural frequency variance varies as the
angular speed of the system varies. It is also shown that tolerance effects of some design variables are more
significant than those of other design variables. Such information could provide a useful guideline for
engineers for the robust design of a mechanical system. The general outline of the procedure is abbreviated
in Fig. 15.
Find the dynamic equilibrium position
using Newton-Raphson method with Eq.(10)

Find the mass, damping and stiffness matrices
using finite difference method with Eqs.(22-24) 

Choose a design variable b

Find the sensitivity of the mass, damping and
stiffness matrices using FDM 

Find the sensitivity information of the system
natural frequencies using Eqs. (25-27) 

Find the effect of the tolerance of b
on the variances of natural frequencies

Fig. 15. Procedure to analyze the tolerance effects on the natural frequency variance of a constrained multi-body system in dynamic

equilibrium.
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